Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Front Microbiol ; 15: 1383618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646633

RESUMO

Proteus mirabilis is a Gram-negative bacterium with exclusive molecular and biological features. It is a versatile pathogen acclaimed for its distinct urease production, swarming behavior, and rapid multicellular activity. Clinically, P. mirabilis is a frequent pathogen of the human urinary system where it causes urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). This review explores the epidemiology, risk factors, clinical manifestations, and treatment of P. mirabilis infections, emphasizing its association with UTIs. The bacterium's genome analysis revealed the presence of resistance genes against commonly used antibiotics, an antibiotic-resistant phenotype that poses a serious clinical challenge. Particularly, the emergence of extended-spectrum ß-lactamases (ESBLs) and carbapenemases resistant P. mirabilis strains. On a molecular level, P. mirabilis possesses a wide array of virulence factors including the production of fimbriae, urease, hemolysins, metallophores, and biofilm formation. This review thoroughly tackles a substantial gap in understanding the role of metallophores in shaping the virulence factors of P. mirabilis virulence. Siderophores, iron metal chelating and transporting metallophores, particularly contribute to the complex pathogenic strategies, displaying a potential target for therapeutic intervention.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38652189

RESUMO

Siderophores are molecules that exhibit a high specificity for iron (Fe), and their synthesis is induced by a deficiency of bioavailable Fe. Complexes of Fe-siderophore are formed extracellularly and diffuse through porins across membranes into bacterial cells. Siderophores can bind heavy metals facilitating their influx into cells via the same mechanism. The aim of the studies was to determine the ability of siderophore-producing bacteria isolated from soils in the north-west part of Wedel Jarlsberg Land (Spitsbergen) to chelate non-Fe metals (Al, Cd, Co, Cu, Hg, Mn, Sn, and Zn). Specially modified blue agar plates were used, where Fe was substituted by Al, Cd, Co, Cu, Hg, Mn, Sn, or Zn in metal-chrome azurol S (CAS) complex, which retained the blue color. It has been proven that 31 out of 33 strains were capable of producing siderophores that bind to Fe, as well as other metals. Siderophores from Pantoea sp. 24 bound only Fe and Zn, and O. anthropi 55 did not produce any siderophores in pure culture. The average efficiency of Cd, Co, Cu, Mn, Sn, and Zn chelation was either comparable or higher than that of Fe, while Al and Hg showed significantly lower efficiency. Siderophores produced by S. maltophilia 54, P. luteola 27, P. luteola 46, and P. putida 49 exhibited the highest non-Fe metal chelation activity. It can be concluded that the siderophores of these bacteria may constitute an integral part of the metal bioleaching preparation, and this fact will be the subject of further research.

3.
J Bacteriol ; : e0002424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591913

RESUMO

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE: Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.

4.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612157

RESUMO

Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.

5.
Front Chem ; 12: 1361796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425658

RESUMO

Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.

6.
Food Microbiol ; 120: 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431318

RESUMO

In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.


Assuntos
Carne , Peptídeo Hidrolases , Pseudomonas , Animais , Bovinos , Espécies Reativas de Oxigênio , Carne/microbiologia , Ferritinas/genética , Peptídeos
7.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
8.
mSystems ; 9(4): e0139723, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501880

RESUMO

Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.


Assuntos
Chromobacterium , Ferro , Sideróforos , Humanos , Sideróforos/genética , Bactérias/metabolismo , Homeostase/genética , Antibacterianos/química , Peptídeo Hidrolases
9.
mBio ; 15(4): e0242423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470267

RESUMO

Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE: Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.


Assuntos
Streptomyces , Animais , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Estágios do Ciclo de Vida , Esporos Bacterianos , Proteínas de Bactérias/metabolismo
10.
BMC Microbiol ; 24(1): 95, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519885

RESUMO

BACKGROUND: The emergence of antimicrobial resistance in bacterial pathogens is a growing concern worldwide due to its impact on the treatment of bacterial infections. The "Trojan Horse" strategy has been proposed as a potential solution to overcome drug resistance caused by permeability issues. OBJECTIVE: The objective of our research was to investigate the bactericidal activity and mechanism of action of the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin against the antibiotic-resistant Escherichia coli strain OQ866153. METHODOLOGY: Enterobactin, a mixed ligand of E. coli OQ866153, was conjugated with Ciprofloxacin and Fosfomycin individually to aid active absorption via specific enterobactin binding proteins (FepABCDG). The effectiveness of the conjugates was assessed by measuring their bactericidal activity against E. coli OQ866153, as well as their ability to inhibit DNA gyrase enzyme and biofilm formation. RESULTS: The Fe+3-enterobactin-Ciprofloxacin conjugate effectively inhibited the DNA gyrase enzyme (Docking score = -8.597 kcal/mol) and resulted in a lower concentration (25 µg/ml) required to eliminate supercoiled DNA plasmids compared to the parent drug (35 µg/ml; Docking score = -6.264 kcal/mol). The Fe+3-Enterobactin-Fosfomycin conjugate showed a higher inhibition percentage (100%) of biofilm formation compared to Fosfomycin (21.58%) at a concentration of 2 mg/ml, with docking scores of -5.481 and -3.756 kcal/mol against UDP-N acetylglucosamine 1-carboxyvinyltransferase MurA. CONCLUSION: The findings of this study suggest that the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin can effectively overcome permeability issues caused by efflux proteins and enhance the bactericidal activity of these drugs against antibiotic-resistant strains of E. coli.


Assuntos
Antibacterianos , Fosfomicina , Antibacterianos/química , Fosfomicina/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli , Enterobactina/química , Enterobactina/metabolismo , Enterobactina/farmacologia , DNA Girase , Testes de Sensibilidade Microbiana
11.
Curr Med Chem ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310389

RESUMO

Siderophores are low molecular weight compounds produced by microorganisms to scavenge iron in iron-deficient environments. Rhodotorulic acid, a natural hydroxamate siderophore, plays a vital role in iron acquisition for fungi and bacteria. As the simplest natural hydroxamate siderophore, it exhibits a high affinity for ferric ions, enabling it to form stable complexes that facilitate iron uptake and transport within microorganisms. This article provides a comprehensive analysis of this hydroxamate siderophore, rhodotorulic acid, its synthesis, physicochemical properties, and biological significance. It also explores its applications in antifungal and plant protection strategies. Insights into RA derivatives reveal distinct biological effects and applications with potential in various fields, from antioxidants to antifungals. Rhodotorulic acid and its derivatives show promise for novel therapies, plant protection strategies, and iron supplementation in agriculture. Understanding their properties could advance science and medicine with sustainable practices.

12.
Front Microbiol ; 15: 1331021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357356

RESUMO

Bacteria secrete various iron-chelators (siderophores), which scavenge Fe3+ from the environment, bind it with high affinity, and retrieve it inside the cell. After the Fe3+ uptake, bacteria extract the soluble iron(II) from the siderophore. Ferric siderophores are transported inside the cell via the TonB-dependent receptor system. Importantly, siderophore uptake paths have been also used by sideromycins, natural antibiotics. Our goal is to hijack the transport system for hydroxamate-type siderophores to deliver peptide nucleic acid oligomers into Escherichia coli cells. As siderophore mimics we designed and synthesized linear and cyclic Nδ-acetyl-Nδ-hydroxy-l-ornithine based peptides. Using circular dichroism spectroscopy, we found that iron(III) is coordinated by the linear trimer with hydroxamate groups but not by the cyclic peptide. The internal flexibility of the linear siderophore oxygen atoms and their interactions with Fe3+ were confirmed by all-atom molecular dynamics simulations. Using flow cytometry we found that the designed hydroxamate trimer transports PNA oligomers inside the E. coli cells. Growth recovery assays on various E. coli mutants suggest the pathway of this transport through the FhuE outer-membrane receptor, which is responsible for the uptake of the natural iron chelator, ferric-coprogen. This pathway also involves the FhuD periplasmic binding protein. Docking of the siderophores to the FhuE and FhuD receptor structures showed that binding of the hydroxamate trimer is energetically favorable corroborating the experimentally suggested uptake path. Therefore, this siderophore mimic, as well as its conjugate with PNA, is most probably internalized through the hydroxamate pathway.

13.
J Hazard Mater ; 466: 133504, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310848

RESUMO

This study aims to evaluate the role of indigenous microorganisms in the mobilization of potentially toxic elements (PTE) and rare-earth elements (REE), the influence of the bioavailability of carbon sources that might boost microbial leaching, and the generation of neutral/alkaline mine drainage from alkaline tailings. These tailings, with significant concentrations of total organic carbon (TOC), were mainly colonized by bacteria belonging to the genera Sphingomonas, Novosphingobium and Solirubrobacter, and fungi of the genera Alternaria, Sarocladium and Aspergillus. Functionality analysis suggests the capability of these microorganisms to leach PTE and REE. Bio-/leaching tests confirmed the generation of neutral mine drainage, the influence of organic substrate, and the leaching of higher concentrations of PTE and REE due to the production of organic acids and siderophores by indigenous microorganisms. In addition, this study offers some insights into a sustainable alternative for reprocessing PMC alkaline tailings to recover REE.


Assuntos
Metais Terras Raras , Metais Terras Raras/metabolismo , Bactérias/metabolismo , Carbono/metabolismo
14.
J Glob Antimicrob Resist ; 37: 4-7, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38408563

RESUMO

OBJECTIVES: The emergence of pathogens co-harbouring multiple mobile resistance and virulence elements is of great concern in clinical settings. Herein, we report an O101: H10-ST167 Escherichia coli Hu106 strain isolated from the urinary tract of a female in China. METHODS: Antibiotic susceptibility testing was used to present the antimicrobial resistance spectrum. Whole-genome sequencing (WGS) and bioinformatic analysis were used to clarify the virulent and resistance mechanisms. Furthermore, the virulence of this strain was tested by the Greater wax moth larvae and siderophore production experiment. RESULTS: The strain E. coli Hu106 was resistant to almost all antimicrobials tested, and only susceptible to aztreonam, amikacin, and tigecycline. WGS analysis revealed that the strain Hu106 co-harboured blaNDM-9 and mcr-1 on p2-Hu106, belonging to IncHI2/IncHI2A (256,000 bp). The co-existence of both resistance genes, blaNDM-9 and mcr-1, on the plasmid p2-Hu106 was mainly acquired by transposition recombination of mobile antibiotic elements mediated by IS26 and/or IS1 on IncHI2/IncHI2A type plasmid. In addition, the virulence clusters aerobactin (iutA-iucABCD) and salmochelin (iroBCDEN) were identified on an IncFIB/IncFIC(IncFII) type plasmid p1-Hu106, flanked by small mobile elements such as IS1A, ISkpn28, and IS3, respectively. After performing genomic comparison of p1-Hu106 with the WGS in NCBI, we identified that the virulent plasmid p1-Hu106-like could spread in different clones of E. coli and Klebsiella pneumoniae, revealing its underlying dissemination mechanism between Enterobacterales. Furthermore, the strain caused a decreased survival rate of larvae and produced high siderophore units (62.33%), similar to hypervirulent K. pneumoniae NTUH-K2044. CONCLUSIONS: The strains co-carrying the multidrug-resistant plasmid p2-Hu106 and virulent plasmid p1-Hu106 should be closely monitored to prevent its further spreading.

15.
Microbiol Spectr ; 12(3): e0369323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311809

RESUMO

The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE: Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.


Assuntos
Fibrose Cística , Fenóis , Infecções por Pseudomonas , Tiazóis , Humanos , Animais , Camundongos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Ferro/metabolismo , Meios de Cultivo Condicionados/metabolismo , Fibrose Cística/microbiologia , Quelantes de Ferro , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mamíferos
16.
Microbiol Spectr ; 12(3): e0295323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315029

RESUMO

Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE: Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.


Assuntos
Achromobacter denitrificans , Achromobacter , Fibrose Cística , Infecções por Bactérias Gram-Negativas , Humanos , Achromobacter/genética , Fibrose Cística/microbiologia , Prevalência , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Achromobacter denitrificans/genética , Fatores de Virulência/genética , Sideróforos
17.
Biology (Basel) ; 13(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38392297

RESUMO

The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium's pathogenicity-the capsule, lipopolysaccharide, fimbriae, and siderophores. Siderophores are secondary metabolites that allow iron to sequester from the surrounding medium and transport it to the intracellular compartment of the bacteria. A number of variables may lead to K. pneumoniae colonization in a specific area. Risk factors for infection include local healthcare practices, antibiotic use and misuse, infection control procedures, nutrition, gender, and age.

18.
mBio ; 15(2): e0027723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236035

RESUMO

Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.


Assuntos
Fenóis , Tiazóis , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Sideróforos/metabolismo , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Enterobactina/metabolismo , Ferro/metabolismo , Infecções Urinárias/microbiologia
19.
Chemistry ; 30(18): e202304007, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271285

RESUMO

A fully enantioselective, catalytic synthesis of the algal morphogen (-)-thallusin using polyene cyclization chemistry is reported. The synthesis features dedicated precursor design, introduction of a TMS-substituted arene as a regioselective terminator, very high enantiomer excess (ee) on gram scale, and productive scaffold functionalization. Furthermore, an ee determination methodology of thallusin samples was developed, and the ee of biosynthesized thallusin was determined. Fe(III)-uptake studies demonstrated that the cellular uptake of iron facilitated by thallusin derivatives was independent of their morphogenic activity, suggesting their active import via siderophore transporters as a shuttle system.


Assuntos
Piridinas , Alga Marinha , Ulva , Compostos Férricos , Estereoisomerismo , Sideróforos
20.
Eur J Med Chem ; 265: 116073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169270

RESUMO

Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 µM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Salicilatos/farmacologia , Sideróforos/farmacologia , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...